coming with $\mathrm{Cr}(\mathrm{II})$ ion. 2. Diphenylcarbazone reacts with $\mathrm{Cr}(\mathrm{III})$ and $\mathrm{Cr}(\mathrm{II})$ ions to form the same complex as observed above. No reaction occurs with chromium(VI) ion. 3. The stoichiometry of the reaction of chromium and the reagents is in a ratio of three moles of reagent to two moles of the metallic ion. 4. The highly absorbing chromium complex exists as a cationic species in aqueous solution. 5 . The chromium complex is extracted, together with an anion, into non-aque-
ous media as a neutral molecule. 6. A chromium-(III)-diphenylcarbazone complex is postulated as the colored species in the reactions.

The above conclusions are the result of all of the experimental data obtained. This situation is unique in studies of the systems under consideration. Such a situation serves to clarify much of the unsatisfactory nature of the existing literature on the subject.
Iowa City, Iowa

[Contribution from the Department of Chemistry and the Purdue Research Foundation, Purdue Untversity]

The Molecular Structure of Perfluorotrimethylamine by Electron Diffraction ${ }^{1}$

By R. L. Livingston and G. Vaughan
Received March 15, 1956

The molecular structure of perfluorotrimethylamine has been investigated by electron diffraction using the visual correlation procedure. The structural parameters, as determined by this investigation, are as follows: $\mathrm{C}-\mathrm{F}=1.32 \pm 0.02 \AA$., $\mathrm{C}-\mathrm{N}=1.43 \pm 0.03 \AA ., \angle \mathrm{FCF}=108.5 \pm 2.0^{\circ}$, and $\angle \mathrm{CNC}=114 \pm 3^{\circ}$.

Introduction

Previous investigations of the structures of hexafluoropropene ${ }^{2}$ and octafluorocyclobutane ${ }^{3,4}$ in this Laboratory indicated, for these molecules, that the closest approach of fluorine atoms which are bonded to different carbon atoms is about 2.70 \AA. or twice the van der Waals radius of fluorine. Preliminary calculations on perfluorotrimethylamine indicated that if a similar $\mathrm{F} \cdot \mathrm{F}$ distance prevailed in this compound, then rather unusual structural parameters would be encountered; hence an investigation of the molecular parameters of this compound was undertaken.

Experimental

The sample of perfluorotrimethylamine was supplied by Dr. W. H. Pearlson of the Minnesota Mining and Manufacturing Company. In the absence of any comparative data, their estimate of a purity greater than 98 mol per cent. was based on the constancy of the boiling point and the nolecular weight over successive distillations. No known compounds were observed as impurities in the infrared spectrum.
The diffraction photographs were obtained in the usual way ${ }^{6}$ using a camera designed and constructed by Professor H. J. Yearian of the Purduc Physics Department. The camera distance was about 107.1 mm ., and the electron wave length, as determined from a transmission pattern of ZnO , was about $0.0588 \AA$. The recorded diffraction pattern of perfluorotrimethylamine extended to a q value of about 95 .
Interpretation of the Diffraction Pattern.-The visual correlation method ${ }^{5,6}$ and the radial distribution method ${ }^{7,8}$ were used in interpretation of the diffraction pattern. The measurements of the

[^0]diffraction features on three of the best plates are summarized in Table I. These values are based on measurements of each feature by two observers. The visual curve shown in Fig. 1 was based on independent interpretations of the patterns by three observers. The interpretations were in close agreement on all features except as noted below in the case of the eighth maximum and the ninth minimum. The portion of the curve in the interval $q=0$ to $q=20$ was copied directly from the most acceptable model as is customary.

Due to the diffuse nature of the eighth maximum and the ninth minimum, there was some doubt as to the exact shape of these features. However, it was the opinion of all observers that the maximum was asymmetric to the outside and that the in1dicated shapes of these features are approximately correct. Due consideration was given to this uncertainty in selecting acceptable models.

The radical distribution curve appearing in Fig. 1 was calculated using the equation ${ }^{8}$

$$
\begin{equation*}
r D(r)=\sum_{q=1}^{q_{\max }} I(q)_{0} \exp \left(-b q^{2}\right) \sin \frac{\pi q}{10} r \tag{1}
\end{equation*}
$$

The values $I(q)_{0}$ were read from the visual curve, Fig. 1, and the radial distribution curve was calculated on I.B.M. tabulators. ${ }^{8}$ The peak at 1.37 \AA. corresponds to the $\mathrm{C}-\mathrm{F}$ and $\mathrm{C}-\mathrm{N}$ distances and at $2.23 \AA$. corresponds to the $\mathrm{N} \cdot \mathrm{F}$ distance and the $\mathrm{F} \cdot \mathrm{F}$ distance in the CF_{3} group. If preliminary calculations of models showed quantitative incompatibility with the curve with respect to these two peaks, further investigations of these models were abandoned. It was later demonstrated that none of these models was within the range of acceptability. In view of the complex nature of the vibrational problem for this molecule, as indicated later, a complete quantitative interpretation of the radial distribution was not attempted.

The structural determination of perfluorotrimethylamine involves the evaluation of four param-

Table I
q_{c} / q_{0} Values for Acceptable Models of Perfluorotrimethylamine

Feature		$q 0$	$\mathrm{M}_{1 \mathrm{E}}$	$\mathrm{G}_{2 \mathrm{E}}$	Model		$\mathrm{H}_{3 \mathrm{E}}$	$\mathrm{H}_{2 \mathrm{D}}{ }^{\text {a }}$	Wt.
2		20.10	0.914	1.021	1.021	0.904	.	0.980	0
	3	25.85	0.974	0.958	0.959	0.958	0.959	. 962	0
3		30.37	1.031	1.025	1.015	1.031	1.023	. 992	1
	4	34.31	1.004	0.999	0.995	1.002	0.997	. 994	2
4		37.25	0.989	. 982	. 979	0.988	. 985	1.004	0
	5	44.04	. 987	. 982	. 978	. 985	. 984	0.963	2
5		48.07	. 992	. 980	. 986	. 987	. 987	. 992	5
	6	53.74	. 982	. 994	. 984	. 976	. 979	. 993	2
6		57.35	1.003	. 996	. 997	. 992	. 994	1.007	5
	7	61.36	0.974	. 970	. 970	. 976	. 976	0.977	2
7		64.85	0.986	. 977	. 979	. 987	. 991	1.006	0
	8	71.16	1.006	1.006	1.006	. 995	. 994	0.999	1
8		76.90	1.006	1.019	1.007	. 991	. 994	1.008	0
	9	88.77	0.965	1.021	1.009	1.019	1.010	1.009	0
9		95.91	. 985	0.996	. 998	0.984	0.995	0.997	1
Wt. nean			. 995	0.990	. 990	0.990	0.990	0.992	
	dev.		± 0.010	± 0.010	± 0.009	± 0.008	± 0.007	± 0.009	

${ }^{a}$ Although the qualitative agreement is not entirely satisfactory for this model, the ratios are included to denionstrate that this model is a fairly good approximation to the structure of this compound.
eters if one considers only rigid models with C_{3} symmetry with the angular orientation of the CF_{3} groups fixed relative to the axis of symmetry. In

Fig. 1.-Radial distribution, visual and theoretical intensity curves for perfluorotrimethylamine.
all models examined in this investigation, the angular orientation parameter was chosen so that equal values were obtained for the six shortest distances between fluorine atoms on different carbon atoms.

The rigid models examined in this investigation covered the three parameter fields shown in Fig. 2.

Fig. 2.- Parameters for calculated models for perfluorotrimethylamine.
In all models the $C-F$ distance was $1.33 \AA$., and the values assumed for the remaining parameters are indicated on the chart. Curves were calculated on I.B.M. tabulators using the equation ${ }^{8}$

$$
\begin{equation*}
I(q)=\sum_{i} \sum_{j} \frac{Z_{i} Z_{j}}{r_{i j}} \exp \left(-b_{i i} q^{2}\right) \sin \frac{\pi q}{10} r_{i j} \tag{2}
\end{equation*}
$$

None of the theoretical curves calculated for rigid models was in agreement with the visual curve,
nor was there any indication that any other rigid models would prove satisfactory. Curve $P_{1 R}$ was selected as the rigid model curve in closest agreement with the visual curve. The obvious disagreements of the shapes of the fourth maximum and the eighth and ninth minima formed the basis for the rejection of this model. All other rigid model curves showed even greater discrepancies.
The effect of the three sets of $b_{i j}$ values, designated A, B and C in Table II, was examined next. Preliminary calculations indicated that set C might prove to be satisfactory. Models $D_{1}, J_{1}, P_{1}, \mathrm{CD}_{2}$, $\mathrm{D}_{2}, \mathrm{HJ}_{2}, \mathrm{HP}_{2}, \mathrm{~J}_{2}, J \mathrm{P}_{2}, \mathrm{KQ}_{2}, \mathrm{PN}_{2}, \mathrm{P}_{2}, \mathrm{D}_{3}, \mathrm{P}_{3}$ and Q_{3} were calculated using set C of the $b_{i j}$ values; these models are designated as $D_{1 c}, J_{1 c}, P_{1 c}$, $\mathrm{CD}_{2 \mathrm{c}}$, etc. (The double letter designation refers to a model with parameters midway between those for models denoted by the individual letters.) The curve for model $\mathrm{PN}_{2 \mathrm{C}}$ was chosen as the most acceptable curve of this group and may be rejected on several counts. As seen in Fig, 1, the sixth and seventh minima are somewhat too deep, and the seventh maximum shows no shoulder and is too intense. Since all other models in this group gave rise to theoretical intensity curves which were in poorer agreement with the visual curve, all of these models are rejected. Extrapolation to $\angle C N C=$ 112.5° or 110° indicated that satisfactory curves could not be obtained using these $b_{i j}$ values.

Table II
Values of $b_{i j}$ Used for Perfluorotrimethylamine Models

$\begin{gathered} \text { Dis- } \\ \text { tance } \end{gathered}$						
	A	B	${ }^{\text {c }}{ }^{\text {c }}$	D	E	F
$\mathrm{C}-\mathrm{F}$	0	0	0	0	0.16	0.16
$\mathrm{C}-\mathrm{N}$	0	0	0	0	0	0
$\mathrm{F}_{1} \cdots \mathrm{~F}_{\underline{\underline{2}}}$	0	0	0	0	0.68	0.68
N•F	0	0	0	0	0.90	0.90
$\mathrm{C} \cdot \mathrm{C}$	0	0	0	0	0.68	0.68
$\mathrm{C}_{1} \cdots \mathrm{~F}_{4}$	0.25	0.56	0.80	∞	1.40	4.20
$\mathrm{C}_{1} \cdots \mathrm{~F}_{5}$	1.70	5.20	7.75	∞	1.40	4.20
$\mathrm{C}_{1} \cdot \mathrm{~F}_{6}$	0. 25	0.56	0.80	∞	1.40	4.20
$\mathrm{C}_{1} \cdots \mathrm{~F}_{\hat{\imath}}$	0.25	0.56	0.80	∞	1.40	4.20
$\mathrm{C}_{1} \cdot \mathrm{~F}_{8}$	1.30	$2.5 \overline{5}$	4.75	∞	1.40	4.20
$\mathrm{C}_{1} \cdot \mathrm{~F} \%$	0.25	0.56	0.80	∞	1.40	4.20
$\mathrm{F}_{1} \cdots \mathrm{~F}_{4}$	0.56	0.80	1.01	∞	4.20	9.23
$\mathrm{F}_{1} \cdots \mathrm{~F}_{5}$	2.68	4.29	6.40	∞	4.20	9.23
$\mathrm{F}_{1} \cdots \mathrm{~F}_{6}$	0.80	1.01	1.37	∞	4.20	9.23
$\mathrm{F}_{1} \cdots \mathrm{~F}_{8}$	0.06	0.25	0.56	∞	4.20	9.23
$\mathrm{F}_{1} \cdots \mathrm{~F}_{9}$	0.06	0.25	0.56	∞	4.20	9.23
$\mathrm{F}_{2} \ldots \mathrm{~F}_{3}$	4.29	6.40	9.23	∞	4.20	9.23
$\mathrm{F}_{4} \cdot \mathrm{~F}_{6}$	1.80	1.01	1.37	∞	4.20	9.23
$\mathrm{F}_{3} \cdots \mathrm{~F}_{0}$	1.01	1.37	2.68	∞	4.20	9.23
$\mathrm{F}_{3} \cdot \mathrm{~F}_{0}$	1.37	2.68	4.20	∞	4.20	9.23

${ }^{a}$ See Fig. 2 for the numbering of the atoms.
The effect of applying infinite $b_{i j}$ values to the non-bonded $\mathrm{C} \cdot \mathrm{F}$ distances and to all the $\mathrm{F} \cdot \mathrm{F}$ distances, except those within each CF_{3} group, was next examined. Set D of the $b_{i j}$ values, Table II, was used in calculation of $A_{2 D}, C_{2 D}, E_{2 D}, F_{2 D}$, $\mathrm{H}_{2 \mathrm{D}}, \mathrm{K}_{2 \mathrm{D}}, \mathrm{L}_{2 \mathrm{D}}, \mathrm{N}_{2 \mathrm{D}}$ and $Q_{2 \mathrm{D}}$. Curve $\mathrm{H}_{2 \mathrm{D}}$ is a representative curve of this group. The excellent qualitative agreement of this curve, except for the absence of the shoulders on the fourth and seventh n11axima, indicates that the molecule is subject to
rather severe vibrations of such a nature that the contributions of the longer non-bonded distances to the molecular scattering are relatively slight. However, these contributions cannot be ignored if completely satisfactory qualitative agreement with the visual curve is to be obtained.

In view of the relatively slight contributions of the non-bonded $\mathrm{C} \cdot \mathrm{F}$ and long $\mathrm{F} \cdot \mathrm{F}$ distances as indicated above, sets E and F of the $b_{i j}$ values, Table II, were then selected for examination, and preliminary calculations indicated that set E would probably be the more reasonable of the two sets. For $\angle \mathrm{FCF}=107.5^{\circ}$, models $\mathrm{G}_{1 \mathrm{E}}, \mathrm{H}_{1 \mathrm{E}}, \mathrm{K}_{1 \mathrm{E}}$ and $\mathrm{M}_{1 \mathrm{E}}$ were calculated; for $\angle \mathrm{FCF}=108.5^{\circ}$, models $\mathrm{B}_{2 \mathrm{E}}, \mathrm{C}_{2 \mathrm{E}}, \mathrm{F}_{2 \mathrm{E}}, \mathrm{G}_{2 \mathrm{E}}, \mathrm{H}_{2 \mathrm{E}}, \quad \mathrm{J}_{2 \mathrm{E}}, \mathrm{K}_{2 \mathrm{E}}, \mathrm{M}_{2 \mathrm{E}}, \mathrm{N}_{2 \mathrm{E}}$, $P_{2 E}$ and $Q_{2 E}$ were calculated; and for $\angle F C F=$ 109.5°, models $\mathrm{G}_{3 \mathrm{E}}, \mathrm{H}_{3 \mathrm{E}}$, and $\mathrm{K}_{3 \mathrm{E}}$ were calculated.

For convenience of discussion, the groupings of the models were made according to the qualitative similarity of the curves with regard to the major points of disagreement with the visual curve.

Curves $\mathrm{M}_{1 \mathrm{E}}, \mathrm{G}_{2 \mathrm{E}}, \mathrm{H}_{2 \mathrm{E}}, \mathrm{G}_{3 \mathrm{E}}$ and $\mathrm{H}_{3 \mathrm{E}}$ were selected as the theoretical curves in qualitative agreement with the visual curve. Curves $\mathrm{H}_{2 \mathrm{E}}$ and $\mathrm{H}_{3 \mathrm{E}}$ are shown in Fig. 1. Curve $\mathrm{H}_{2 \mathrm{E}}$ shows the upper limit of acceptability for the prominence of the shelf on the fourth maximum, and curve $\mathrm{H}_{3 \mathrm{E}}$ shows the lower limit of acceptability for the prominence of the shoulder on the seventh maximum. It should be noted here that curve $\mathrm{H}_{2 \mathrm{E}}$ shows better agreement with the accepted visual interpretation of the shape of the eighth maximum and the ninth minimum than any other curve in this group. Some slight changes of slope on the inside of the third maximum were also observed on these curves but this was not considered as an adequate basis for rejection of models.

Curve $\mathrm{H}_{1 \mathrm{E}}$ is taken as being representative of the group of models $\mathrm{G}_{1 \mathrm{E}}, \mathrm{H}_{1 \mathrm{E}}, \mathrm{K}_{1 \mathrm{E}}, \mathrm{B}_{2 \mathrm{E}}$ and $\mathrm{C}_{2 \mathrm{E}}$. The appearance of a maximum in place of the observed shelf on the seventh maximum is the basis for the rejection of this group of models.

Of the group of curves $\mathrm{F}_{2 \mathrm{E}}, \mathrm{J}_{2 \mathrm{E}}, \mathrm{K}_{2 \mathrm{E}}, \mathrm{M}_{2 \mathrm{E}}, \mathrm{N}_{2 \mathrm{E}}$, $P_{2 \mathrm{E}}, Q_{2 \mathrm{E}}$ and $\mathrm{K}_{3 \mathrm{E}}$, curve $\mathrm{P}_{2 \mathrm{E}}$ is in best agreement with the visual curve. Curve $P_{2 E}$ shows the seventh maximum as a nearly symmetrical feature; this curve is therefore rejected. The remainder of the curves in this group show at least this much disagreement and hence are also rejected.

Curves $J_{2 A}, J_{2 D}$ and $J_{2 E}$ are included in order to show the effects of various $b_{i j}$ values on the theoretical intensity curves. The selection of the sets of $b_{i j}$ values shown in Table II was made as follows: the changes in interatomic distances in all rigid models were tabulated against 2.5° changes in the CNC angle, and the $b_{i j}$ values for set A were then assigned roughly proportional to the change in interatomic distances. Larger values were assigned for sets B and C. In sets E and F, the values assigned for the first five distances were based on those used by Shoolery, et al., ${ }^{9}$ in the determination of the structure of trifluoromethylacetylene. The qualitative agreement shown by the models based on the $b_{i j}$ values of set D indicated extensive
(9) J. N. Shoolery, R. G. Shulman, W. F. Sheehan, Jr., V. Schomaker and D. M. I'ust. J. Chent. Phys., 19, 1361 (1951).
damping of the contributions from the longer nonbonded distances, and the $b_{i j}$ values assigned to these distances in sets E and F were selected in an attempt to approximate the observed damping.

In view of the complexity of an empirical determination of such a large number of $b_{2 j}$ values, no further examinations of models were made. However, it was felt that the $b_{i j}$ values of set E are at least of the proper order of magnitude, and the closed areas shown in Fig. 2 represent the parameter volume in which the most acceptable models, based on set E, are located. In assigning the limits shown, allowances were made in the selection of acceptable models for further variations of the $b_{i j}$ values.

Based on the foregoing discussions, models $\mathrm{M}_{1 \mathrm{E}}$, $\mathrm{G}_{2 \mathrm{E}}, \mathrm{H}_{2 \mathrm{E}}, \mathrm{G}_{3 \mathrm{E}}$ and $\mathrm{H}_{3 \mathrm{E}}$ are accepted as satisfactory fits. The q_{c} / q_{0} values for these models are summarized in Table I.

The weightings assigned to each feature indicate the estimated reliability of that feature in the determination of the q_{c} / q_{0} ratios. Zero weightings are assigned to the inner features where the intensity of the background is of sufficient magnitude to make measurements unreliable. Low weightings were assigned to asymmetric features on which reproducible measurements could not be made and to the outer features where the pattern is so weak that reliable measurements are not generally obtained.

Table III summarizes the parameters calculated from the mean q_{c} / q_{0} values, and the accepted values of these parameters and the linnits of acceptability

Table III
Structural Parameters as Determined from q c $/ q_{0}$ Values ${ }^{\text {a }}$

Parameter	MiE	$\mathrm{G}_{2 \mathrm{E}}$	$-\mathrm{Model}_{\mathrm{H}_{2 \mathrm{E}}}$	$\mathrm{G}_{3 \mathrm{E}}$	$\mathrm{H}_{3 \mathrm{E}}$
C-F	1.323	1.317	1.317	1.317	1.317
$\mathrm{C}-\mathrm{N}$	1.413	1.445	1.445	1.445	1.445
$\angle \mathrm{CNC}$, deg.	112.5	112.5	115	112.5	115
$\angle \mathrm{FCF}$, deg.	107.5	108.5	108.5	109.5	109.5
$\mathrm{F} \cdot \mathrm{F}^{\text {b }}$	2.580	2.595	2.613	2.563	2.578

Final Results with Limits of Acceptability

\quad Parameter	Result
$\mathrm{C}-\mathrm{F}$	1.32 ± 0.02
$\mathrm{C}-\mathrm{N}$	1.43 ± 0.03
$\angle \mathrm{CNC}$, deg.	114 ± 3
$\angle \mathrm{FCF}$, deg.	108.5 ± 2.0
$\mathrm{~F} \cdot \mathrm{~F}^{b}$	2.59 ± 0.04

${ }^{7}$ All values for interatomic distances quoted in ångström utits. ${ }^{b}$ Closest approach of fluorine atoms on different carbon atoms.
as determined by this investigation are included in the table.

Discussion of Results

The distance of $2.59 \pm 0.04 \AA$. obtained for perfluorotrimethylamine for the closest approach of fluorine atoms attached to different carbon atoms is appreciably less than the value of $2.70 \AA$. found in hexafluoropropene ${ }^{2}$ and octafluorocyclobutane, ${ }^{3,4}$ indicating that the minimum distance of approach of $2.70 \AA$. does not hold for all organic fluorides. As previously mentioned, the vibration factors required to generate intensity curves in satisfactory agreement with the visual curve indicate rather large intramolecular vibrational amplitudes.

The CNC angle reported here as $114 \pm 3^{\circ}$ is larger than the value of $109 \pm 2^{\circ}$ obtained for trimethylamine ${ }^{10}$ and the $\mathrm{C}-\mathrm{N}$ distance appears to be appreciably larger than the corresponding distance in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}(1.47 \pm 0.01 \AA$.).

Comparisons between the structure of the CF_{3} group in $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{~N}$ and in other molecules seem to be worthwhile. A recent investigation of CHF_{3} by electron diffraction ${ }^{11}$ gave $1.334 \pm 0.005 \AA$. for the $\mathrm{C}-\mathrm{F}$ distance and $108^{\circ} 30^{\prime} \pm 30^{\prime}$ for the $\angle \mathrm{FCF}$; the microwave results ${ }^{12}$ of $1.332 \AA$. and $108^{\circ} 48^{\prime}$, respectively, agree quite favorably with these values. An electron diffraction investigation of the structure of $\mathrm{CF}_{3} \mathrm{CF}_{3}{ }^{13}$ yielded $\mathrm{C}-\mathrm{F}=1.330 \pm 0.015 \AA$. and $\angle \mathrm{FCF}=108.5 \pm 1.5^{\circ}$. The values resulting from a combination of electron diffraction and microwave techniques on $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CH}^{9}$ are $\mathrm{C}-\mathrm{F}=$ $1.335 \pm 0.010 \AA$. and $\angle \mathrm{FCF}=107.5 \pm 1^{\circ}$. FCF angles less than tetrahedral have also been obtained in $\mathrm{CF}_{3} \mathrm{CH}_{3}{ }^{14} \mathrm{CF}_{3} \mathrm{CN}^{15}$ and $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}{ }^{16}$ In all cases, the $\mathrm{C}-\mathrm{F}$ distances appear to be somewhat larger than the $\mathrm{C}-\mathrm{F}$ distance of 1.32 ± 0.02 \AA. obtained for $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{~N}$, but the FCF angles are in close agreement.

Acknowledgments.-The authors wish to thank Professor Yearian for the use of his electron diffraction apparatus and Dr. Pearlson for the sample of $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{~N}$. They are also grateful to the Purdue Research Foundation for financial support of this work.
Lafayette, Ind.
(10) V. Schomaker, private communication.
(11) L. O. Brockway, private communication.
(12) S. N. Ghosh, R. Trambarulo and W. Gordy. J. Chem. Phys., 20, 605 (1952).
(13) J. L. Brandt and R. L. Livingston, This Journal, 76, 2096 (1954).
(14) J. L. Brandt. Ph.D. Thesis, Purdue University, 1952,
(15) M. D. Danford and R. L. Livingston, This Journal, 77, 2944 (1955)
(16) W. F. Sheehan and V. Schomaker, ibid., 74, 4468 (1952).

[^0]: (1) Contains material from the Ph.D. thesis of G. Vaughan, Purdue Research Foundation Fellow in Chemistry, 1951-1953.
 (2) F. A. M. Buck and R. L. Livingston, J. Chem. Phys., 18, 570 (1950).
 (3) H. P. Lemaire and R. I. Livingston, ibid., 18, 569 (1950).
 (4) H. P' Lemaire and R. L. Liviagston, This Journal, 74, 5732 (1952).
 (j) L. O. Brockway, Rev. Modern Phys., 8, 231 (1936).
 (6) L. Pauling and L. O. Brockway, J. Chem, Phys., 2, 867 (1934).
 (7) L. Pauling and I. O. Brockway, This Journal, 57, 2684 (1935).
 (8) P. A. Shaffer, V. Schomaker and L. Pauling, J. Chem. Phys, 14, 659 (1946).

